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Alntraet--The general balance equations are developed for an interface represented by a dividing surface 
and for a moving common line represented as an intersection of dividing surfaces. The surface excess 
variables associated with a dividing surface are expressed both in terms of those variables describing the 
three-dimensional interracial region of finite thickness and in terms of those variables describing bulk 
phases that extend up to the dividing surface. 

A structural model for the interface is suggested in which a suspension of solid bodies representing 
surfactant molecules is distributed about a singular surface separating two adjacent bulk solvent phases. 
The suspension is required to have the same average behavior as the interfacial region. This is interpreted 
as meaning that the general jump balance for a continuum dividing surface represented by an interfacial 
suspension is a local area average. Specific results are derived for two structural models, each in the same 
simple shear field. One consists of a dilute suspension of neutrally buoyant spheres floating with their 
centers restricted to the dividing surface. The other is a dilute suspension of chains of neutrally buoyant 
spheres with the sphere at one end of the chain floating in the dividing surface. 

I N T R O D U C T I O N  

Let us define a phase interface to be that region separating two phases in which the properties 
or behavior of the material differ from those of the adjoining phases. 

There is considerable evidence that density and the concentrations of the various species 
present are appreciably different in the neighborhood of an interface (Defay et al. 1966). As the 
critical point is approached, density is observed to be a continuous function of position in the 
direction normal to the interface (Hein 1914; Maass 1938; Mclntosh et al. 1939; Palmer 1952). This 
suggests that the phase interface is a three-dimensional region, the thickness of which may be 
several molecular diameters or more. 

Molecular models for the interfacial region are a separate subject which we will not discuss 
here. It is sufficient to mention that the three-dimensional character of the phase interface is 
explicitly recognized in statistical mechanical calculations (Ono & Kondo 1960). 

There are two continuum models for the phase interface. 
The most obvious model is a three-dimensional region of finite thickness. Korteweg (1901) 

suggested that the stress-deformation behavior in such a region could be described by saying 
that the stress tensor is a function of the rate of deformation tensor, the gradient of density and 
the second gradient of density. He used a linear form of this relationship to analyze the stresses 
in a spherical shell that represented the interface of a static spherical bubble. In the limit as the 
thickness of the shell was allowed to approach zero, the result took the same form as that 
obtained by assuming a uniform tension acts in a two-dimensional spherical surface separating 
the two phases. While Korteweg's approach is appealing, there are inherent difficulties. We 
have no way of studying experimentally the stress and velocity distributions in the thin 
interracial region. His model for interfacial stress-deformation behavior can be tested only by 
observing the effect of the interfacial region upon the adjoining phases. No dynamic problems 
have been solved using Korteweg's model for interracial behavior. 

As a model for a phase interface in a body at rest or at equilibrium, Gibbs (1928) proposed a 
two-dimensional dividing surface that sensibly coincides with the phase interface and separates 
two homogeneous phases. By a homogeneous phase, he meant one in which all variables, such 
as mass density and stress, assume uniform values. He suggested that the cumulative effects of 
the interface upon the adjoining phases be taken into account by the assignment to the dividing 
surface of an excess mass or energy not accounted for by the adjoining homogeneous phases. 
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Gibbs' approach may be extended to include dynamic phenomena, if we define a homo- 
geneous phase to be one throughout which each constitutive equation or description of material 
behavior applies uniformly. As in the static case, the cumulative effects of the interface upon 
the adjoining phases can be described by associating densities and fluxes with the dividing 
surface. 

If we are to describe how this dividing surface moves as a function of time, we must be able 
to locate it at some reference time. It is not sufficiently precise to say that the dividing surface 
is sensibly coincident with the phase interface (Defay et al. 1966). Sometimes it is convenient to 
define the location of the reference dividing surface to be such that either the surface mass 
density or the surface molar density is everywhere zero. More often the reference dividing 
surface is chosen to be that for which the mass or molar density of one of the species is zero 
(Defay et al. 1966). 

If both a three-dimensional region of finite thickness and a dividing surface can be used as 
models for a phase interface, then we should be able to express the variables appearing in one 
model in terms of those appropriate to the other. Buff 0956) and Buff & Saltsburg (1957) 
assumed a simple expression for the actual stress tensor in the interfacial region at equilibrium 
and studied surface tension. Slattery (1967a) derived a generalized form for balance equations 
at a dividing surface. The source terms in these balance equations were in turn expressed in 
terms of two types of variables on either side of the dividing surface: those corresponding to 
the three-dimensional interracial region of finite thickness and those describing a bulk phase 
that extends up to the dividing surface. 

Einstein 0956) suggested that a dilute suspension of neutrally buoyant solid spheres has the 
same average stress-deformation behavior as a dilute solution of a solute, whose molecular 
weight is large in comparison with that of the solvent. More specifically, the equations of 
motion for the continuum represented by the suspension are obtained by taking the local 
volume average of the equations of motion for the individual phases in the suspension 
(Batchelor 1970; Russel 1976; Jeffrey & Acrivos 1976). This suggests how one might proceed in 
developing a hydrodynamic or structural model for the interface. 

We begin with the general balance equations for an interface represented by a dividing 
surface and for a moving common line represented as an intersection of dividing surfaces. The 
jump mass and momentum balances at a dividing surface as well as the mass and momentum 
balances at a moving common line are developed as specific examples. 

The balance equations for an interface visualized as a region of finite thickness must be 
consistent with those appropriate to a dividing surface. This leads to interpretations for the 
surface excess variables in terms of those describing the three-dimensional interfacial region of 
finite thickness and those describing bulk phases that extend up to the dividing surface. 

A structural model for the interface is suggested in which a suspension of solid bodies 
representing surfactant molecules are distributed about a singular surface separating two 
adjacent bulk solvent phases. This suspension is visualized as having the same average 
behavior as an interfacial region containing a dilute solution of surfactant whole molecular 
weight is large in comparison with that of either solvent. The jump mass and momentum 
balances at the singular surface are developed for this structural model. 

The suspension is required to have the same average behavior as the interracial region. This 
is interpreted as meaning that the general jump balance for a continuum dividing surface 
represented by an interfacial suspension is a local area average. The local area averages of the 
jump mass and momentum balances are developed in detail. 

Specific results are derived for two structural models, each in the same simple shear field. 
One consists of a dilute suspension of neutrally buoyant spheres floating with their centers 
restricted to the dividing surface. The other is a dilute suspension of chains of neutrally 
buoyant spheres with the sphere at one end of the chain floating in the dividing surface. 
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G E N E R A L  B A L A N C E  E Q U A T I O N S  WHEN I N T E R F A C E  IS R E P R E S E N T E D  BY A D I V I D I N G  
S U R F A C E  

With the assumption that the effect of the interface may be attributed to a dividing surface, 
the general balance or general conservation law for some quantity associated with a multiphase 
material body takes the form 

d(fodv+fOdA)=-f~,.ndA-f#~".t~ds+fo~dV+f#"'~"dA. [1] 
R X S C R X 

Here R denotes the region occupied by the body, S the closed surface bounding the body, X the 
dividing surfaces enclosed by S, C the lines formed by the intersection of X with S. t time, 
the density of the quantity per unit volume within the bulk phases, 0.o the density of the 
quantity per unit area on X, ~p the flux of the quantity (per unit area) through S, n the unit 
vector normal and outwardly directed with respect to the closed surface S, ~p(") the flux of the 
quantity (per unit length of line) through C, # the unit vector normal to C that is both tangent 
and outwardly directed with respect to Y., p the mass density within the bulk phases, p(¢) the 
mass density (per unit area) on 2, ~ the rate of production of the quantity per unit mass at each 
point within the bulk phases, and ~')  the rate of production of the quantity per unit mass at 
each point on ~, d V indicates that a volume integration is to be performed, and dA that an area 
integration is to be carried out. 

The left side of [I] can be arranged in a more convenient form by means of the transport 
theorem for a body containing intersecting dividing surfaces (Appendix a) 

d (f sdV+ f Ct¢'dA)= f (~-t$ +$divv)dV 
R X R 

X 

fo¢,, (O(~)[v ") - a(*l)] • #) ds [21 

where 

d~ml~k -- (-~-) x* F,x3 + V~b" v dt [3] 

is the material derivative, 

d(~)~ (~')_/0~'1\ + (,,) (v(O) 
d t  • - u )  

[41 

is the surface material derivative, 

u-~ dt ],,y~ [5l 

is the velocity of a fixed point on the dividing surface, 

z = p(¢)(yl,y2,t) [6] 

is the parametric equation for the moving and deforming dividing surface, X I, X 2, and x 3 are 
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coordinates denoting position in space, y~ and y2 are the surface coordinates denoting position 
on the dividing surface, v the velocity vector, v (~ the surface velocity vector or the time rate of 
change of position of a material particle on the dividing surface, C (~' the union of all the 
common lines or three-phase lines of contact formed by the intersection of dividing surfaces, 
div the divergence operator, div (,) the surface divergence operator (Hopke & Slattery 1975), 
and ds denotes that a line integration is to be performed. The boldface brackets are used on the 
dividing surface between phases i and j as a shorthand notation 

[B El -- B(i~¢ i) + Bo)~ ~ [7] 

with the understanding that B ") is evaluated within phase i in the limit as the dividing surface is 
approached and ~:") is the unit normal to the dividing surface pointing into phase i. Similarly, 
the boldface parentheses are used on the common line formed by phases i, j, and k as a 
shorthand notation 

( B ( ° ' ) v )  _= B(O',ii)v(#) + B('r, lk)p (ik) + B ( ' T J k ) p  (-/t) [8] 

where B (~'°~ is evaluated on the dividing surface between phases i and j in the limit as the 
common line is approached and !,@ is the unit normal to the common line which is tangent to 
and directed into this dividing surface. The scalar v <~). ~: is the speed of displacement of the 
dividing surface in the direction ~:. By u (a) we mean the velocity of a fixed point on the common 
line; u <~'. v is the speed of displacement of the common line in the direction v. By means of 
Green's transformation (Slattery 1972), we can say 

f ~.ndA= f div~,dV + f I¢.#ldA. 
S R X 

[9] 

Green's transformation for a surface (McConnell 1957) permits us to write 

f~,(~'.t,,ds=fdiv(,,)~("'dA+f,c,(~,'")'v)ds. 
C X C 

[10] 

With [2], [9], and [10], we can rearrange [1] in the form 

f ( t + div 
R 

v + div ~, - p~) d V + f { ~  + a/~) div(,,)V~) + div(¢)~,(*)- p<~)(~) 
x 

+[¢,(v-¢~))-¢+,p.~:]}dA + f (¢'[v("'-u(C'q'~'+~(""v) ds:o. 
(cl) 

C 
[I l l  

Equation [11] applies to any body, no matter how large or small. It implies that at each point 
within a phase 

d~]~, + ~b div v + div ~, - p~" = 0 [12] 

at each point on a dividing surface 

( o ' )  • o"  

d o ~  + S<,.Mwt,.)v < ) + div(,.)¢¢,.) _ p<,.~-o.) + [$(v - v'~) • ~ + ~ .  ~:] = 0 
{.I [  

[13] 
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and at each point on a common line 

(~bt,,~[vt~,~ _ u~a)], p + Ct,,i. v) = 0. [14] 

As a particular example of [1], consider conservation of mass for which 

¢, - p,  ¢ , ~  - p ~ ) ,  

~ = ~ " ~ -  O, ~" = ~r~"~- O. '[15] 

From [12] to [14], we see that conservation of mass implies at each point within a phase the 

equation of  continuity 

d~m>p + P div v = 0 [16] 
dt 

at each point on a dividing surface the jump mass balance 

d~Pt~ + p~div¢,,~ v ¢'~ + [p(v - v~"~) • ~:] = 0 [17] 

and at each point on a common line the mass balance at a common line 

(p<~i[¢~i_ u~CIi], v) = 0. [18] 

As another example of [I], consider Euler's first law or Newton's second law for which 

- p v, ~c~i _ p~,,iv~,,~ ' 

¢, =- - T,  q ~  --- - T ~ ,  

~'--h, ~ --- b~"~ [19] 

where T is the stress tensor, T "~ the surface stress tensor (Hopke & Slattery 1975), b the 

external force per unit mass acting within a phase, and b ~'I the external force per unit mass 

acting on ~. From [12] to [14], Euler's first law implies at each point within a phase Cauchy's 

first law 

p ~ -  div T - p b = 0 [20] 

at each point on a dividing surface the jump momentum balance 

p~"~ d~s>v~l - d iv~  T ~) - p ~  b ~ + [p(v - v ~')) (v - v~)) • ~ - T. ~] = 0 [21] 
dt 

and at each point on a common line the momentum balance at a common line 

(p¢*)v(")[v (~) - u(a)] • ~, - T ('~). ~,) = 0. [22] 

Common practice requires that, in satisfying [16] through [22], we assume the tangential 
components of velocity are continuous across the dividing surface, 

atX: P.v("l = P.v.  [23] 
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By P we mean the projection tensor that transforms every vector on X into its tangential 
component. The normal component of v t'> is the speed of displacement of X. 

GENERAL BALANCE EQUATION WHEN INTERFACE IS R E P R E S E N T E D  BY A THREE- 
D I M E N S I O N A L  REGION 

Let us now assume that the effect of the interface may be attributed to a three-dimensional 
region of finite thickness. 

In figure 1, we see a material body that occupies a region R and consists of two phases. In 
addition to the dividing surface E, we also show two surfaces X + and X- 

(a) that are parallel (Willmore 1959) to X, 
(b) that move with the speed of displacement of X, and 
(c) that enclose all of the material in R whose behavior is not described by the constitutive 
equations appropriate to either of the neighboring phases during the time of observation. 

We refer to the region enclosed by X ÷ and X- as R a~. Notice that R C11 always includes the 
interfacial region, but at any particular time may include a portion of the neighboring phases as 
well. 

I 

I S(I~, 

Figure I. Region R occupied by a material body consisting of two phases. The closed surface S bounds R: R (t~ 
and S ~j~ are those portions of R and S enclosed by ~- and X +; S (t ~, is the locus of all the straight lines stretching 
from ~- to 2 + that are normal to Y., and that pass through C, the closed curve bounding Y.; R ~t ~* is bounded by the 
surfaces X-, X +, and S a~*: it is measured along the normal to X; ~t- and h ÷ are the values of ~ at X and 5~ ÷ 

respectively. 

Under these circumstances, the general balance or general conservation law for some 
quantity associated with a multiphase material body takes the form 

dfq/"dW=-f¢"'.ndA+fp"'¢"dV 
R S R 

[241 

or  

R R 

=- f ¢.ndm- f(, f pCdW+ f,, (p"'¢"-pOdV 
S S R R 

[25] 

with the understanding that outside the interfacial region 

,q/t1 = @, ¢(I>= ¢, 

pa~ = p, s ra~ = ~'. [261 

By S {t~ we refer to that portion of S bounding R "~. 
The surface S {t;* in figure I is the locus of all the straight lines stretching from X- to X + that are 
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normal to 8 and that pass through C, the closed curve bounding 8. Let us approximate 

/$+S)dY; 1 (IL”‘-9)dV 1271 
R R (I’* 

f 
(#)- p).n dA= 

I 
(+o(‘) - ++)a II dA 

11) 
s s (I’* 

P81 

and 

1 (/+“,+&)dVk j- ($“e’‘--&)dV. ~91 
@II R(I)* 

Here R”‘* is the region bounded by 2’, Z-, and S (I)* The right side of [281 can be expressed in . 

terms of an integral over C: 

I 
(4p(‘)-Cp)*ndA= f[l:_*((P”‘-p)dA}.pds. [301 

SW C 

By A, we mean the distance measured along the normal to I;; A+ and A- are the values of A at 
2’ and 2- respectively. For any quantity B (Buff 1956; Slattery 1%7a) 

A. BdV=f fl+ B(l-K,A)(I-KZA)~A dA 1311 
1 

in which K~ and ~~ are the principal curvatures of 8. Equation [31] permits us to write the 
R.H.S. of [27] and [29] as integrals over 8. Using [27]-[31], we can rewrite [25] as 

~(/~dV+~j-~($11’-$)(l-K,A)(l-~2A)dAdA) 

=“_,,,:A-f~f~~,,_,)dA~..d, 
s C 

+fprdV+jl:’ (p”‘c”- p[) (I- K,A) (I- KZ~\) dA dA. 

R f 

If we now compare [32] with [l], we can identify 

$kes *+ 

f 
(I+“- 4) (1 - K,A) (1 - K~A) dA, 

A- 

and 

f 

A+ 

P(“‘5(u’ = (p”‘~“‘- PC) (1 - K,A) (1 - KZA) dA. 
A- 

When [l] is restricted by [15], it describes conservation of mass and [33] requires 

f 

.A+ 

P 
(0) s (p”‘-p)(l -K,A)(I -K,A)~A. 

A- 

WI 

]331 

[341 

1351 

1361 
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When [1] is restricted by [19], it describes Euler's first law and [33]-[35] require 

and 

fa A + p(~v ~ = _ (p(t~v a ) -  pv) (1 - x~A) (1 - x2A) dA, [37] 

T '~ ' -  { ~ +  (T(" -  T) dA }. p 

= P. {f~+ (T")- T)d~}.e [38] 

-- p(,,) j,_ (pa)ba)-pb) (1 - x~A) (1 - K2A)  dA. [39] 

Note that v t') is not defined by [37]. In view of [23] and the requirement that v "~. ~: be the speed 
of displacement of X, v "° is specified by the location and motion of X. In the second line of [38], 
we have recognized the symmetry of the surface stress tensor, a result of Euler's second law. 

STRUCTURAL MODELS FOR INTERFACE 

Our objective here is to study the effect of surfactant upon the behavior of the interface. 
We will make the following assumptions concerning the system. 

(i) There are only three components present: two mutually insoluble solvents and a sur- 
factant that may be soluble in both. 

(ii) The molecular weight of the surfactant is much larger than that of either of the solvents. 
A structural or hydrodynamic model for the interface is sketched in figure 2. The interface is 

a three-dimensional region surrounding a singular surface that separates the two solvent phases. 
Solid bodies, representing the surfactant molecules, are dispersed in some manner within this 
region. Some may intercept the singular surface. The interfacial region, modelled in this way, 
has the same average behavior as an interfacial region containing a solution of surfactant whose 
molecular weight is large in comparison with that of either solvent. 

The general balance [25] may be extended to include this structural model for the interface: 

d{f~bdV+ f (¢("-~b)dV+ ~ d/to"'dA}:-f~.ndA- f (¢('>-~p).ndA 
R R (1) S S ( l )  

- f  ¢(o~.p ds+ f ps r d V+ f(p<I'¢')-p~)dV+ f pto")¢(o")dA. 
C tl) R R (t~ Y-, (t~ 

I40] 

Here X ") is the liquid-liquid singular surface, C "~ are the lines formed by the intersection of X <t~ 
with S, $~o "> is the density of the quantity per unit area on X ~t), ~o~o ~) is the flux of the quantity 
(per unit length of line) through C "), p~o ") the mass density (per unit area) on Xt", and ~'Co~> the 
rate of production of the quantity per unit mass at each point on X "). We can think of Sto"), ~o~ "~, 
pCo"~, and ~'to") as being the values of $(~), ¢t'~, p~'), and ~r~) appropriate to a clean interface. Let 
the dividing surface X be a simply connected extension of ~(~). Using an argument essentially 
the same as that outlined in the previous section, we conclude that on X~ 

~(~"t)------~(o~')+ _ (~b°~-~b)(l-xlA)(1-x2A) dA, [41] 

[42] 
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Figure 2. Region R occupied by a material body consisting of two phases. The interface is a three-dimensional 
region surrounding a singular surface X"~ that separates the two solvent phases. Rigid bodies, representing the 
surfactant molecules, are dispersed in some manner within this region. The lines formed by the intersection of 

X"~ with S are denoted by C"~; the dividing surface X is a simple connected extension of X"~. 

and 

~ + 

p(~.l)~(o,I)____ p(o¢)~(O~r) + _ (p(I~(1) _ p~) (1 -- K IA ) (1 - K2A ) dA. [431 

In contrast, on ~ '~ -= ~ - ~"~, that portion of ~ passing through the rigid bodies, $,,.s), ~pt,~.,, and 
pt,,.,~,.s~ are given by [33]-[35]. In using [33]-[35] in this context or [41]-[43], keep in mind that 

$">, ¢¢t~, and pt~)s rtt~ are now discontinuous functions taking different forms in the fluid and 
solid phases. 

LOCAL AREA AVERAGES 

In introducing the structural model, we proposed that a suspension of rigid bodies dis- 
tributed about a singular surface has the same a v e r a g e  behavior as an interfacial region. All 

quantities such as mass, momentum, and stress are continuously distributed over a continuum 
dividing surface. Equations [33]-[35] and [41]-[43] do not have this feature. It must be an 
average of [33] and [41], of [34] and [42], of [35] and [43] with which we are to be concerned. 

The problem is similar to that encountered with a structural or hydrodynamic model for a 
bulk solution, in which rigid bodies, representing large solute molecules, are dispersed in a 
solvent. The equations of motion for the continuum represented by the suspension are obtained 

by taking the local volume average of the equations of motion for the individual phases in the 
suspension (Batchelor 1970; Russel 1976; Jeffrey & Acrivos 1976). This suggests that the 

general jump balance for the continuum dividing surface represented by an interfacial suspen- 
sion is a local area average of the jump balance for the individual phases intercepted by E in 
figure 2. 

Let us make an additional assumption concerning the system. 

(iii) The characteristic length of a rigid body representing a surfactant molecule is everywhere 
very small compared with the radius of curvature of the dividing surface. At each point on the 
dividing surface, the surface may be considered flat over a region that is large compared with the 
region over which averages are to be defined. 

Let us center upon each point on E in figure 2 a circle c¢. The diameter of the circle should 
not be so small that ~ encloses only a portion of X "~ or only a portion of Xts~ at any point on ~.. 
On the other hand, the diameter of ~ must be sufficiently small that the region over which E is 
locally flat is large compared with the region enclosed by ~. 

Let us define ~ to be the region enclosed by c¢ at each point on X; M is the area of ~. We 
will denote by ~ti~ the closed curve (or curves) bounding all of X "~ contained within ~;  ~ J  is 
the region bounded by ~ti~; M~i~ is the area of $D.~. 
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Assume that B ") is some scalar, vector, or tensor associated with 2 "). We can speak of the 
local area average for 2 ") of B (i) 

1 f B(i) dA [441 
J 

as well as the intrinsic area average for ~") of B ") 

1 f B,,, (B) (i) = ~ dA. [45] 
b,,(i) 

We will also require the total local area average of B, 

(B) -=/~") +/~(s~. [46] 

In view of assumption (iii), we can develop a proof directly analogous to that used for the 
theorem for the local volume average of a gradient (Siattery 1967b; Slattery 1972) to determine 
that 

V / ~ , ) _ l  f B,)v(i ) V(~,)B (i)= (~r) M J~"'-%"~ ds [47] 

where 

~ i )  ___ ~ n (¢(i) [48] 

denotes that portion of ~ which coincides with ~g"). We can refer to [47] as the theorem for the 

local area average o f  a surface gradient. The theorem for the local area average o f  a surface 

divergence 

--<i) div(~)~,)_ 1 ( B "~. v "~ ds [49] d i v ( ~  = ~/J~"~-%"~ 

follows immediately. 

The next two sections illustrate how these ideas can be used. 

LOCAL AREA AVERAGE OF THE JUMP MASS BALANCE FROM A STRUCTURAL MODEL 

In developing the local area average of the jump mass balance, we will assume: 
(iv) The solid bodies are neutrally buoyant. 

(v) The intersection of E with a solid body does not change relative to the body as a function 
of time. 

(vi) The surface mass density p~o ") appropriate to a clean interface is a constant, independent 
of position and time on 2"). 

(vii) There is no mass transfer between the interface and either of the adjoining bulk phases. 

In view of assumption (iv), the surface mass density can be computed on 2") from [41] as 

and on 2 (s) from [33] as 

~A ~+ 
p("~) = p~o" + _ (p(~) - p) d~ = p~o ") [50] 

p(,,.,~ = f~_+ (pa) _ p) da = O. [51] 
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As a result, the total local area average of the surface mass density is 

(p¢,~) = ~3, ' ,  = (1 - x)po "l  [52] 

in which x is introduced as the fraction of 1£ occupied by the solid. 
Using [50] and recognizing assumption (vi) and (vii), we find that on ]~l~ the jump mass 

balance[17] reduces to 
diVl~ v C''l~ = O. [53] 

Employing [51] and assumption (vii), we see that the jump mass balance [17] is identically 

satisfied on 1~"~. 
Because of assumption (v), area is preserved on E~s~. Defining 

~0 = ~0 ~'~ =- 1, ~o = ~o C''s~ - 0, ~. = ~.c~,~ ___ 0 [541 

and remembering assumption (vii), we observe that [13] requires on ~sl 

div~,~)v ~'s~ = 0. [55] 

The theorem for the local area average of a surface divergence [49] requires 

div~,~)vt~---5., = divt~ ~0~ _ -~1 vt~.i), pti) ds = 0 [56] 

where ~"s) are the curves formed by the intersections of the rigid bodies and E within ~. We will 
require v ~') to be a continuous function of position 

at c¢,~: ¢~'~)= v ~''s). [57] 

We conclude from [53], [55], and [56] that 

div~) (v ~)) = 0 [58] 

which we can refer to as the total local area average of the jump mass balance for the structural 

model. 

L O C A L  A R E A  A V E R A G E  O F  T H E  J U M P  M O M E N T U M  B A L A N C E  F R O M  A S T R U C T U R A L  M O D E L  

Let us make these further assumptions. 

(viii) The surface stress tensor T~o "J appropriate to a clean interface is proportional to a 

constant surface tension 3'o, independent of position and time on 1~"): 

T~ ~ = 3,oP. [59] 

The surface viscosity is taken to be zero for a clean interface. 
(ix) Inertial effects can be neglected in the interfacel 

(x) The same external force (gravity) acts upon both the interface and the bulk phases. It 
can be expressed in terms of potential energy per unit mass ~o: 

b ~'~ = b = - Vq~. [60] 

We will refer to a region in which the velocity distribution is disturbed by the presence of a 

MF Val. 4. No. 2--E 
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body as the disturbance neighborhood of the body. If there are no bodies present, we will speak 
of the undisturbed velocity distribution. 

(xi) The suspension is sufficiently dilute that the disturbance neighborhoods associated with 
any two bodies do not overlap. 
With assumption (viii), the surface stress tensor can be calculated on X <° from [42] as 

and on X <') from [34] as 

fA A + T ' ' t) = 3'0P + P" _ (T a~-  T) dA" P 

fA A + T"~">=P • _ (T<I}-T)dA'P. 

[61] 

[62] 

We have recognized here that Euler's second law implies that the surface stress tensor is 
symmetric. The total local area average of the surface stress tensor is consequently 

where 

I f  ~fx+ (T(, ,_T) dA} dA. P (T ('~)) = (l - x)3,0 P + P 'M Jse [JA- [63] 

Here Rdisturb is that region surrounding and including a single body in which T ~I~ is not equal to 
the undisturbed stress distribution T. 

Russel (1976) has observed that 

div [z (T - p~,l)] = T - p~pl + z div (T - ~ I )  = T - p~I [65] 

in which we have noted that Cauchy's first law [20] takes the form 

div (T - p~ I) = 0 [66] 

for assumptions (ix) and (x). Equation [65] permits us to say that in the region Rbo~y occupied by the 

body 

fR (T<~"'-T)d V = JR {div[z(T'""-P{~'~'~Pl)]+P°'S~pl-div[z(T-txPl)]-P~l}dV 
body body 

f {div [z(T a ' ' -  T)] - z(p - pa")h} d V = f_ div [z(T ~L'~- T)] d V 
J R  body J R  body 

: f z(T ̀ Ls'- T) .n  dA : f z(T a ' ' ' -  T ) - n  dA [67] 
.as body J Shoat 

in which we have introduced Sbody as the closed bounding surface of the body. In the third line 

of this argument, we have reasoned 

f r a y  {div [z(p - p~l.,~) ~o I] + (pa.,~ _ p)~o I} d V = f r a y  - z(p - pa.,>) b d V. [68] 

This is zero for neutrally buoyant bodies either floating wholly within one phase or straddling X 
so long as the density distribution within the solid is such that locally p~1,,~= p. For bodies of 

uniform density straddling X, we neglect its effect with respect to the first term on the right in 



BALANCE EQUATIONS AND STRUCTURAL MODELS FOR PHASE INTERFACES 183 

the second line. In the fourth line, we have used Green's transformation (Slattery 1972) and the 
jump momentum balance[21] for the clean interface. In the fifth line, we have again employed 
the jump momentum balance[21], this time at the fluid-solid interface. 

Equation [67] permits us to write 

fR (T('~-T) dV = fs z(T(l")- T)'n dA + ~" (T(L')- T) dV 
disturb body J Rdisturb-Rbody 

I69] 

where Rdisturb--Rbody is that portion of the disturbance region occupied by the liquid phases. 
This together with [63] and [64] gives 

( T " ' ) = ( l - x ) 3 , o P + ~  P'{fs~z(T(L'I-T)'ndA+f (T(""-T)dV}.P. [70] 
bodies j Rdistutb_ Rbody 

With assumptions (ix) and (x), the jump momentum balance [21] reduces to 

dirt,,) T (') + p(")b + [T. g] = 0. [71] 

The local area average of this for ~tl) takes the form 

d. ~-----~,, ~,,~+.-'~-'-'~.~,,~ . - -  1 f~ Tt¢.i).v,)ds+~,)b+[,~i).g] lv~)T + p" "o t l "  ~;1 = dlv(¢~T (')"~- ~ ~,,j [72] 

in which [49] has been employed. We will require the surface stress vector to be a continuous 
function of position 

at ~(is): T (''t~. v (I) = T ('''). v (s) [73] 

and we will assume 5e to be sufficiently small that 

With [52]. this gives 

at Y.: (1") "- T. [74] 

diV~l (T ~¢l) + (I - x) p~o ¢1 b + IT. g] = 0. [75] 

We will refer to this together with [70] as the total local area average of the jump momentum 
balance for the structural model. 

A SIMPLE STRUCTURAL MODEL 

In order to obtain more specific results that we might compare with experimental obser- 
vations, we must describe in more detail the structure of the interface and the flow field to 
which it is subjected. Let us attribute to the interface a simple structure. 

(xii) The bodies used to represent surfactant molecules in the interfacial region are rigid 
spheres whose centers lie upon 2 as shown in figure 3. 

Let us assume that the flow field to which the interface is subjected is also simple. 
(xiii) In the flow field undisturbed by the presence of spheres, shear occurs only in planes 
parallel to 2. 

(xiv) The undisturbed velocity distribution is a linear function of position (homogeneous) 
with the disturbance neighborhood of any sphere. 

(xv) Both bulk liquid phases can be described as incompressible Newtonian fluids. 
Up to this point we have not explicitly stated the frame of reference in terms of which we 

were working. The forms of all the prior equations are independent of the frame of reference. 
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Fluid A 

( 3 - -  
Fluid B 

Figure 3. Structural model for the interfacial region in which the surfactant molecules are represented as rigid 
spheres whose centers lie on the dividing surface. 

In considering the stress distribution within an individual sphere, it will be convenient to work 
in terms of a frame of reference that is centered upon the sphere and that translates with the 
sphere. For the moment, we will not specify how this frame of reference rotates with respect to 
the sphere. 

All vectors and tensors in the remainder of this section refer to this translating and rotating 
frame of reference, unless explicitly noted otherwise. 

Let the subscript (0) indicate a quantity evaluated at the instantaneous center of the sphere. At 
any instant of time, let us expand the undisturbed velocity distribution u on either side of 2 in a 
Taylor series with respect to the center of the sphere zto) = 0 (Brenner 1958; Happel & Brenner 
1973) 

v = V(o) + D(o).Z + W(o).Z + . . . .  [76] 

Here we have introduced the rate of deformation tensor 

D-= ½[Vv + (Vv)T] [77] 

and the vorticity tensor 

W -  ½[Vv- (Vv)r]. [78] 

The higher order terms in [76] may be neglected in view of assumption (xiv). 
Let us choose the frame of reference to rotate in such a way that 

W(o) = 0. [79] 

In view of this, [76] requires that in the rotating and translating frome of reference on either 
side of 2 

v = V¢o) + D¢o)" z + .... [80] 

With respect to a rectangular cartesian coordinate system (zl, z2, z3) such that ~ lies in the 
plane z3 = 0, assumption (xiii) requires that Dto) have only one nonzero component: 

D(o)l 2 ~ O, D(o)I I -~- 0(0)22 ~-- 0{0)33 = D(O)l 3 : 0(0)23 = 0. [811 

With this restriction, [80] satisfies the jump momentum balance [21] and the requirement that 
velocity be continuous at ~. Equation [80] describes the undisturbed velocity distribution 
everywhere in Rdi~turb, on both sides of E. 

Assumption (xi) and [80] suggest 

as r~oo: va, l)~Vto)+Dco).Z. [82] 

In the rotating and translating frame of reference, the sphere, whose radius is a, is seen to 
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rotate as a solid body with an angular velocity fl, 

at r =  a: v a'l>=[IAz. [83] 

Here A indicates that a vector cross product is to be performed. The velocity distribution must 
be continuous 

at X: v "t) is continuous [841 

and it must satisfy the jump momentum balance [21] 

at ~: [T ~1'1)" ~1 = 0. [85] 

With inertial effects neglected, a momentum balance states that the sum of the forces imposed 
upon the sphere by the fluid and by the external force (gravity) must be zero in the rotating and 
translating frame of reference, 

fs T ~I'1)" dA + J p<~.l~ b d V = O. 
r 

n [86] 
sphere J Rsphere 

A moment of momentum balance similarly requires that the sum of the torques imposed upon the 
sphere by the fluid and by the external force must also be zero in this frame of reference: 

Z z A (TtIS~'n) dA + fu zA pt*"~hdV = 0. [87] 
sphere sphere 

Lamb's (1945) solution of the equation of continuty[16] and Cauchy's first law[20] for the 
creeping flow of an incompressible Newtonian fluid was employed in the manner suggested by 
Happel & Brenner (1973). The velocity and pressure distributions in the disturbance neigh- 
borhood of a single sphere consistent with boundary conditions [82]-[84], [86] and [87] take the 
form 

5 1  
v ¢l'l~ = (1 - r *-5) (D¢o)" z) + ~ ~ ( r  * - 7  - -  r *-s) (z. D¢o)" z) z, [881 

p<L~_ Po+ P<~'~ = - 5/z<x'~ Dto~12r *-3 sin 20' sin 2~' [891 

where 

r,--__ r a" [90] 

Here 0' is the spherical coordinate measured from the z3 axis; ~' is the spherical coordinate 
measured from the zt axis in the zt - z2 plane. In arriving at this form of solution, we find that 
the center of the sphere moves with the local undisturbed velocity and that the angular velocity 
of the sphere relative to this frame of reference is zero. 

The Zl and z2 (tangential) components of [85] are satisfied identically by [88]. The z3 (normal) 
component of [85] requires 

From [88], 

(I t)  (I I) at X: - p~'~ + tt ' D33 ' is continuous. [91] 

q 
atE: r~a.o __~ - - • - ' 3 3  = (r* 7 _ r ,  ~). [92] a" 
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Let us define potential energy such that 

So long as 

[89], [92], and [93] imply that 

at2:  ¢ = 0 .  [93] 

]. t l ,  I )  l " t  
/J{O) 12 '~ 1 [94] 

Po 

at ~: - pCiJ)+ ~cl.t)D[~O = _ po [95] 

which satisfies [91]. For/~'~) = 10 -2 dyne s / c m  2 (water) and Po = 106 dynes/cm 2 (approximately 
atmospheric pressure), [94] requires D(o)12< 10 s s-'. This is well within the bounds of most 
experiments. 

With the restriction [94], we can use [88] to compute 

fSsphere z(T (t'l~ - T)" n dA + | (T (I'°- T) d V = 2~" a ~ (/~(a) +/~tn)) 
i -  

D(o). 
• JRdismrb-Ssphere 

[96] 

with the understanding that Ssphere is the surface of the sphere and Rsphere is the region occupied 
by the sphere. The viscosities of the two adjoining phases are tt (a) and/z Cm. This together with 
[70] yields the desired expression for the total local area average of the surface stress tensor 

(T (')) = (I - X)yoP + 2 ~(D (')) [97] 

where we have identified as the surface shear viscosity (Scriven 1960; Slattery 1964) 

-- x a (p(a) + ~(n)). [98] 

In reaching this result, we have said that locally the fraction of 2 occupied by the solid 

and that 

x = 1 ~] b,,d~s ('n'a2) [99] 

(D (~)) -" D(o~. [ 100] 

This last is prompted by [23]. 
For the simple structural model of the interface shown in figure 3 and restricted by 

assumptions (i) through (xv), the total local area average of the jump mass balance is given by [58]. 
The total local area average of the jump momentum balance is described by [75], [97] and [98]. The 
sphere radius a should be interpreted as the hydrodynamic radius of the surfactant molecule in the 
interface. 

ANOTHER SIMPLE STRUCTURE MODEL 

The discussion given in the last section can be extended to another simple structural model 
for the interface in which assumptions (xii) and (xiv) are replaced by 

(xvi) The bodies used to represent surfactant molecules in the interfacial region are flexible 
chains of n rigid spheres. The chain begins with a sphere centered upon 2 and it extends into 
phase A as shown in figure 4. The distance between the spheres is arbitrary but sufficiently large 
that the disturbance neighborhoods of the individual spheres do not overlap. 
(xvii) At some point in time, the chain assumes a configuration such that the centers of the 
spheres lie upon a straight line perpendicular to 2. 
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Figure 4. Structural model for the interfacial region in which the surfactant molecules are represented as 
flexible chains of n rigid spheres. The distance between the spheres is arbitrary but sufficiently large that the 

disturbance neighborhoods of the individual spheres do not overlap. 
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(xviii) The undisturbed velocity distribution is a linear function of position (homogeneous) 
within the union of the disturbance neighborhoods of the elements of the chain. 

The velocity and pressure distributions within the disturbance neighborhood of the sphere 
centered upon • are again given by [88] and [89] with the restriction [94]. The velocity and 
pressure distributions within the disturbance neighborhoods of a sphere lying wholly within 
phase A are described by equations analogous to [88] and [89] written with respect to a frame 
of reference in which the sphere is stationary. 

Given assumption (xvii), how does the configuration of the chain change with time? Let us 
view the chain in the rotating and translating frame of reference appropriate to the first sphere, 
which is centered upon X. From [80], [81] and assumption (xviii), we see that the undisturbed 
velocity at the center of each sphere is the same. Since the center of a sphere moves with the 
local undisturbed velocity, a chain whose spheres are aligned along a straight line perpendicular 
to X will maintain this configuration. 

In the frame of reference chosen to rotate in such a manner that [79] is satisfied, assumption 
(xviii) requires the vorticity tensor to be zero everywhere within an individual disturbance 
neighborhood. This implies that the angular velocity of each sphere measured with respect to 
this frame of reference is zero. The spheres in the chain do not rotate relative to one another. 

Reasoning as we did in the previous section, we conclude that the total local area average of 
the surface stress tensor is again given by [97], where we now identify as the surface shear 
viscosity 

= x a  [(2n - 1)/~tA) + p tin]. [101] 

For the simple structural model of the interface shown in figure 4 and restricted by 
assumptions (i) through (xi), (xiii), and (xv) through (xviii), the total local area average of the 
jump momentum balance is given by [75], [97] and [101]. The sphere radius a in this model 
should be interpreted as the hydrodynamic radius of one of the chain units in the surfactant 
molecule. 

DISCUSSION 

For very dilute solutions of surfactant in the interface, the interfacial tension predicted by 
[97] decreases with increasing surfactant concentration in agreement with common obser- 
vations. 

Equations [98] and [101] predict surface viscosities that are less than the limit of sensitivity 
of any surface viscometer currently in use. This is also consistent with observations. Wasan et 

al. (1971) and Wei & Slattery (1976) studied a "clean" water-air interface with a deep channel 
surface viscometer and found that the surface shear viscosity was zero within the accuracy of 
their measurements. Gupta & Wasan (1974) and Poskanzer & Goodrich (I975) found that the 
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surface shear viscosities were less than the sensitivities of their techniques for dilute solutions 
of non-interacting surfactants. 

Cooper & Mann (1973) estimate on the basis of a kinetic theory calculation that, when the 
surface available per molecule is greater than 103.~2, the surface shear viscosity is of the order 
10 -12 (dyne s/cm). Equation [98] gives on the order of 10 -~° (dyne s/cm) when a = 10 .A and the 
surface available per molecule is 103,~ 2. Given some uncertainty regarding the basis for 
comparison, these two estimates are in good agreement. 
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A P P E N D I X  A 

TRANSPORT THEOREM FOR A BODY CONTAINING INTERSECTING DIVIDING 
SURFACES 

A moving and deforming dividing surface 2 is the locus of a point whose position is a 
function of two parameters yt, y2 and time t: 

z = p~')(yl,y2,t). [AI] 

There exists a many-to-one mapping of a portion of a multiphase body on to X, 

y" = x~(fc~I,t). [A2] 

We visualize that at any given time there may be many material particles occupying a point on 
X. The set of all material particles at any point on X is denoted by ~") and will be referred to as 
a surface particle. Consequently, [A2] and 

(,(,,I = X-1(y ~,y2,t ) [A3] 

may also be thought of as a one-to-one mapping of the set of surface particles on to X. These 
relationships tell us how the surface particles move from point to point on the surface 
independently of how the surface itself is moving. 

The concept of a surface particle is abstract. We have no way of following the surface 
particles in a dividing surface. We are able to observe only spatial descriptions of a dividing 
surface. For example, at some reference time t~ the dividing surface takes the form 

z~ = K ('I (y l, y,2) __ p(~) (yl,y~,t~) [A4] 
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which we can call the reference dividing surface. This suggests that we identify surface 
particles by their location in this reference dividing surface: 

y,a  = K a  (~,(,,,) _~ X "  (~'("', t,,), [A5] 

~-(,,) K-I (y,l, 2 X-I = y,, ) -= (y,,l,y,,2,t,,). [A61 

Equations [A4] and [A5] together describe the reference configuration of the surface particles. 
We can use [A2] and [A6] to describe the intrinsic deformation from the reference 

configuration: 

y~ = Xr~(y~J,y~2,t) - X~(K-~(y~,y~2),t). [A7] 

Let us consider the operation 

d ~ L  ¢('~ dA. 

Here $(") is any scalar-, vector-, or tensor-valued function of time and position on the dividing 
surface. The indicated integration is to be performed over the dividing surface in its current 
configuration X. We should expect that Y, or the limits on this integration, is a function of time. 

Generally, the dividing surface will not be composed of a fixed set of material particles; 
there will be mass transfer between the dividing surface and the two adjoining phases. For the 
moment, let us confine our attention to a dividing surface composed of a fixed set of surface 
particles. Either the dividing surface is closed or no surface particles cross the closed curve C 
bounding X. In this case, we can express the integration over the dividing surface in terms of its 
fixed reference configuration 

where 

f ~b ~' dA = L,, ~b(")J(") dA [A8] 

j(~) _ x /a  &XK"'~ 
V,o,,] det \ 0y,,a ) 1. [A9] 

Here a is the determinant whose elements are the covariant components of the metric tensor 
(McConneil 1957) for the surface in its current configuration; a~ is the determinant of the 
covariant components of the metric tensor for the surface in its reference configuration. The 
advantage is that the integration limits on the right side of [A8] are independent of time: 

d A r ( , , ) \  

f / d  a.(,,) a.(,,) d r(~')\ = l~t *)~' + ~__~u_E__/dA 
\ dt J ' )  dt ] " 

X 

[AIO] 

In the second line of [AI0] we have used the surface derivative, because at this point we are 
thinking of $(,) and J(") as explicit functions of time and position in the reference configuration 
of the surface. One can prove (for the proof of an analogous result in the context of the 
transport theorem for a single-phase body, see Slattery (1972)) 

I d~,)fl"' div(,,) ¢o-). [AI 1] 
J(~) dt = 
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We conclude as a result 

d S ¢(O) dA = L /d(,)¢ (~) (~) t ~ +  $ div(,,)v(')) dA [A12] 

o r  

,':)OA:J" r .,.<:,. [--~-- .(.)~, . .  + div(.> dA 

O~ b(°') - -  . (o-)  = fx (-w-v,=)~, .u-2HO')v(°)'g)dA+fq/*)¢")'t~ds [AI3] 
C 

which are alternative forms of the surface transport theorem. In arriving at the second line of 
[A13], we have used the surface divergence theorem (McConnell 1957) and 

div(.) ~ = - 2H [A14] 

in which H is the mean curvature (McConnell 1957) of the surface. 
In deriving the surface transport theorem, we have followed that portion of a dividing 

surface associated with a set of surface particles. Now let us follow as a function of time a 
surface system in the dividing surface that does not contain a fixed set of surface particles. The 
dividing surface adjoining a moving common line is an example. A rolling motion in one of the 
phases (Dussan & Davis 1974) may force surface particles to cross the common line. Equations 
[A13] and [AI4] do not apply to such a surface system. On the other hand, there is nothing to 
prevent us from associating a set of fictitious surface system particles with this system. It is not 
necessary to fully define these surface system particles. Let # be the unit tangent vector that is 
normal to the curve C(~y~) bounding the surface system and that is outwardly directed with 
respect to the system. Let V(~y~)./~ be the component of the velocity of Ct~y~) in the direction ~. 
We will require only that at Ct~y~) the # component of the velocity of the surface system 
particles be equal to v(~.v/~. If in the derivation of [A13] we replace the set of surface particles 
with this set of surface system particles, the result is 

dt f $ " d A =  f ( 0~(~)-- "')u-2H$("'v(' . ,)dA÷ ..$(~)V(~y~l.#ds. [A15] -- \ T  v ( ~ ) ~ ,  • 

X(sys) ~-'(sys) 

We can refer to this as the generalized surface transport theorem. 
Now let us consider a multiphase body with two or more dividing surfaces intersecting 

in one or more moving common lines. The generalized surface transport theorem is applicable 
to each dividing surface. When it is applied to the sum of the dividing surfaces, we find 

d fx$(")dA= fx{O$(*) ~ a.(~).- ~ua.(¢).('o.g)d A fc$(~)v (~). 

+ fc, c ° ($(o)p). u(CO ds. [AI6] 

The surface divergence theorem (McConnell 1957) and [A14] require 

[AI7] 

This together with 

t~b (~) 
0t V(¢)$ (~)" u + div,o (#(¢)¢")) = d~')~(¢)dt + v.'n') "'*,,)'a;". (,.) [A18] 
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permit us to rewrite [AI6] as 

~ f ~,~, da = f "d,.~ '~) ,~, v,~,) (----~+~O div.,) dA+fc,,,,(q/~'Iv'='-u'""l.v), ds. [AI9] 

The transport theorem for a region containing a singular surface (Slattery 1972) tells us 

~fR¢O'dA= fR (~+4, divv)dV+ f l4,(v-¢~)).6]dA. [A201 

The sum of [AI9] and [A20] yields [2], the transport theorem for a body containing intersecting 
dividing surfaces. 


